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Deviations from the Poisson Behavior of Equilibrium 
Fluctuations in a Closed System 
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A molecular dynamics simulation of dimer formation in an adiabatic, hard- 
core, square-well, dilute two-dimensional gas yields a non-Poissonian dimer 
number distribution. Its ratio of variance to mean deviates from unity in a 
manner recently predicted theoretically. 
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1 .  I N T R O D U C T I O N  

Fluctuations in both equilibrium and nonequilibrium chemical systems have 
been recently of considerable interest, a-5~ The Poisson formula has been 
found to give an excellent description of their distribution both in and out of 
equilibrium in remarkably many instances. Undisputably, there are situations 
where one cannot expect and does not observe this simple behavior. Chemical 
instabilities investigated by Prigogine and his co-workers <2-4~ yield examples 
of that sort. Still, a first guess about the Poisson nature of equilibrium or 
steady-state fluctuations is very often a correct one. 

It is therefore somewhat surprising that a simple chemical system can 
deviate from the Poisson behavior, as was recently pointed out by Van 
Kampen (6~ and Hanusse. (7~ They have found that in a canonical ensemble the 
conservation of the total number of atoms implies a modification of the 
Poisson distribution. Moreover, they have shown that these differences do not 

vanish in the limit of an infinitely large system. 
Non-Poissonian behavior in a closed system was justified by Van 

Kampen (6~ via a birth-death equation for the probability distribution for 
numbers of chemically distinct molecules. It was also assumed there that the 
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system is kept in thermal and chemical homogeneity by stirring, which was 
expected to destroy even the short-range correlations. These combined 
assumptions were found previously to lead to a non-Poissonian behavior in 
far-from-equilibrium systems, which, when analyzed more carefully, behave 
in a Poissonian fashion. Nicolis and Prigogine (~ have shown that deviations 
from Poissonian behavior disappear when the analysis is conducted by means 
of a more complete birth-death equation in a phase space rather than 
in number space. Their conclusion has been confirmed by molecular dynamics 
experiments/5~ 

Even though this failure of birth-death number space representation was 
detected by Nicolis and Prigogine far from equilibrium, and number space 
considerations of Hanusse and Van Kampen leading to the non-Poissonian 
predictions for fluctuations refer to the equilibrium canonical ensemble, it 
seems interesting to verify their conclusions by comparison with a molecular 
dynamics experiment. This is the purpose of this paper. 

2. F L U C T U A T I O N S  IN A C A N O N I C A L  E N S E M B L E  

We shall direct our attention to the problem of dimer formation. For 
this Van Kampen has derived explicit formulas. He has considered the 
reaction 

2A1 ~ A2 (1) 

and has found that the equilibrium distribution of the number of dimers N2 
in a canonical ensemble is given by 

P(N2) = C(f2Z~)N2(f2z1)N-~N~/[N2! (N  -- 2N2)!] (2) 

Here, C is the normalization constant, Z1 and Z2 are the usual monomer 
and dimer partition functions, and [2 is the volume of the container in which 
N atoms are always present (N1 + 2N2 = N). This formula is different from 
the grand canonical prediction, which for dimers would be 

P(N2) = C(~2Z2)N2/N2! (3) 

and an analogous formula would hold also for monomers. 
The validity of (2) can be verified by considering the Markovian gain- 

loss equation(>~): 

P(N2, Nx) = f2K[(N2 + 1)(N1 - 2)P(N2 + 1, N~ -~ 2) - N2N~P(N2, N1)] 
+ U2K'{(N1 + 2)(N~ + 1)(NOP(N2 - 1, N~ + 2) 

- N~(N~ - 1)(N1 - 2)P(N2, Ul)} (4) 

This gain-loss equation corresponds to the actual reaction of dimer 
formation, Eq. (6), rather than the simplified version of it given by (1). 
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Probability distribution P(N2,  N:)  satisfies (4) providing that constants K and 
K' are related by the law of mass action, K/K' = Z~2/Z2. 

Even in an infinitely large system ( N - +  oe) the two probability distribu- 
tions (2) and (3) remain different. This is best seen by comparing the variance 
with the average value of N2 for both. The closed system distribution yields 
in the limit of large N 

r = ((N2 - ( N 2 ) ) 2 ) / ( N 2 )  = [1 + 8(Z2/Z12)(N/U~)] 1/2 (5) 

This ratio r is equal to unity for the Poisson distribution (3). 

3. A C O M P A R I S O N  W I T H  M O L E C U L A R  D Y N A M I C S  

Let us now compare predictions of the two results with a molecular 
dynamics (MD) experiment. We consider dimers formed in a three-body 
collision between hard-core, square-well particles of an imperfect gas. The 
chemical reaction reads 

7r 

3A1 ~- A2 + A1 (6) 
/c 

Although this reaction is different from the one considered in (1), it 
yields the same predictions for the equilibrium distribution of fluctuations, 
since the equilibrium distribution function is sensitive only to the conservation 
laws and not to the details of the reaction scheme. Therefore, a system simu- 
lated by means of molecular dynamics is almost the same as the one for 
which Eqs. (2) and (5) were derived. Almost, because the simulated system is 
adiabatic rather than isothermal. Moreover, the molecular dynamics program 
admits a possibility of creation of chemical species larger than dimers. Before 
we compare results of molecular dynamics with theoretical value for 
((N2 - ~N2))2)/~N2),  we must ascertain that the effects of adiabaticity and 
the existence of clusters larger than dimers are much smaller than the effect 
given by (2) itself. We find it more convenient to postpone detailed discussion 
of these corrections to Section 4 and present now the results of the com- 
parison between the molecular dynamics experiment and the two possible 
equilibrium distributions (2) and (3). 

As in earlier work, we have studied a system of 100 hard-core, square- 
well disks in periodic boundary conditions. (8-1~ All the particles are identical, 
with mass rn = 6.628 x 10 .23 g, radius of the hard core el = 2.98 x 10 -8 
cm, radius of the outer well e2 = 1.96e~, and depth of the well e = 2.305 x 
10-14 erg. All particles are enclosed in a square well of  side L = 112.08el. For  
convenience we shall express reduced time t* in units of [e/(m~12)] -1/2 and 
we shall use reduced energy and temperature units (T* = kT/E, E* = E/e). 
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The evolut ion of  the system is fol lowed s tar t ing f rom artificially created 
init ial  condi t ions .  (8) Bound  states arise natura l ly  in the course o f  m a n y - b o d y  
coll isions.  The resul t ing l ibera t ion  of  the b inding  energy into kinetic  energy 
of  v ibra t ions  causes increases of  the kinetic temperature .  This " h e a t i n g  u p "  
is relat ively fast  and  an equi l ibr ium tempera tu re  is usual ly  reached after  
t* ,-~ 500-1000 or  t ~ 8 x 10-1~ x 10 -9 sec in the l abo ra to ry  time. This 

re laxat ion  t ime depends  on the to ta l  energy of  the system. 
A compu te r  run of  a system at E* = 0.7 (equi l ibr ium kinetic t empera-  

ture T * =  0.802) consis t ing of  100 hard-core ,  square-well  part icles  was 
per formed.  In the course of  this run of  42,000 full coll is ions in a to ta l  t ime 
t* = 16,808 ( l abora to ry  t ime t = 3 x 10 -a  sec) a to ta l  of  5185 dimers  
formed.  F r o m  the da ta  acquired in the course of  this run,  a h i s togram 
represent ing P ( N 2 )  and shown in Fig, 1 was const ructed.  We shall  use this 
h i s togram in our  assessment  of  the d is t r ibut ion  of  f luctuat ions in a closed 

system. The average number  o f  dimers present  in the system was <N2> = 
7.032. The average number  of  monomers  present  in the system was <Nz> = 
82.086. The average number  of  part icles  tha t  were ei ther b o u n d  in dimers or  

remained  m o n o m e r s  is equal  to <N> = <NI> + 2<N2> = 96.15. Let  us use 

the app rox ima t ion  

z : <N2>/<NI> m "~ f2Z2(g2Zi) -2 = 1.044 x 10 -a  (7) 
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Fig. 1. The probability distribution of dimers P(N2) and trimers P(Na) for a system at 
equilibrium (E* = 0.7). The histograms give the MD distributions, while the lens-shaped 
symbols and triangles show the predictions of the Poisson formula (3). The corrected 
formula (2) yields the results given by open squares for N = 96 and closed squares for 
.~ = 100 for the dimer distribution in a canonical ensemble. 
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The dependence given above is exact in a grand canonical ensemble. For a 
canonical ensemble, provided (37) >> (N2), which is the case here, it is a good 
approximation. With these simplifications we can write (s = 1) 

{((N2 - (N2) )2 ) / (N2) }TH "~ [1 + 8z37]-1/2 ~ 0.745 _+ 0.05 (8) 

To calculate the variance of the dimer distribution, we can have first 
(N22) = 54.5904, and thus 

{((N2 - (N2) )2 ) / (N2) }MD = 0.732 + 0.05 (9) 

in good agreement with the closed-system corrections of Van Kampen and 
Hanusse and in disagreement with the Poisson distribution. 

Apart from statistical errors given with the estimates above, there are 
systematic errors that may have altered the histogram in Fig. 1. They are 
caused, as we have indicated before, by the existence of clusters larger than 
dimers, by adiabaticity, and by the finite size of the investigated system. In 
what follows we shall show that their influence on dimer distribution is much 
smaller than the dominant effects of particle number conservation. 

4. I N F L U E N C E  OF LARGER C L U S T E R S  A N D  C O N S T A N T  
E N E R G Y  ON THE D I M E R  D I S T R I B U T I O N  F U N C T I O N  

The clusters larger than dimers influence 37, the total number of particles 
in monomers and dimers. We can evaluate their influence by considering a 
combined equilibrium distribution function, including probabilities of 
occurrence of configurations with larger cluster species. In effect we shall 
prove that the relevant range of variations of 37 is too small to alter the value 
of the ratio of the mean square fluctuation to the average fluctuation. A 
combined distribution function is given by ~r 

_ ~T  (t)zj)  ~, N)  P ( N 2 ,  N a , . . . )  = C I ] - - ~ - - j . ~  8(~. ' jN,,  (i0) 

8(i, j )  is a Kronecker delta, and N is the total number of particles. This expres- 
sion can be rewritten in an obvious fashion with the explicit use of 37 (37 = 
N - ~,j = a jNj )  : 

P ( N 2 ;  N3, N 4 , . . . )  

= {C(~Z2)N2(f2Z1)  ~ -  2N2/[N2 [ (37 -- 2N2)!]} 

• {~=~ (aZ,)",/N,~}a(NI+2N~,37) (11) 
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The computer experiment histogram in Fig. 1 shows a reduced distribu- 
tion function 

Pr(N2) : ~ P(N2; N3, N4,...) (12) 
{Ns,N4, ...} 

where the summation runs over all the admissible configurations of (Na, 
N4 . . . .  ). Such a reduced distribution function may be expressed more ex- 
plicitly as 

Pr(NJ = ~ P~(N2; 97)w(97) (13) 

where 

P~(N2; N) = C~(f2Zz)N~(f2Z~) ~- 2N:/[N2 ! (N - 2NJ !] 

and the w(97) are the probabilities that a system will contain a total of 57 = 
N1 + 2N2 particles available for monomer-dimer  reaction: 

W(97) ~ {N3,N~4,...} [j~=a (~ZJ)Nj/NJ!] 3(j~=?Nj, N -  97) (14) 

The weights w(97) are normalized, i.e., ~w(97)  = 1. In our system (E* = 0.7) 
for the largest admissible values of  97 it follows that w(100) + w(97) + w(96) 
+ w(95) + w(94) = 0.97, with the average <97> = 96.15 and standard 
deviation ~ 3. In other words, the system becomes smaller than 94 only with 
3 % probability. The distribution function of dimers is, in our case, insensitive 
to such small changes. 

We may argue that errors introduced by the use of (2) with the average 
value of <97) rather than the correct, complete distribution are small [see 
(13)] on analytical grounds. Let us first note that an error introduced into the 
ratio r by A97, a small variation of 97, can be evaluated as follows: 

A[<(AN2)2)/(N2)] =~ 4zA97 (15) 

where z = f~Z2/(f~Z1) 2 ~ 10 -a. Therefore, for typical A97 ~ 3 the value of 
the ratio is altered by ~ 10 -2, certainly less than the error indicated by the 
estimate (9). It may, however, happen that even if the ratio of  the mean square 
fluctuation to the average one stays almost constant when small variations 
are made, <N2) changes by a significant amount. This could result in the 
increase of the ratio r in a reduced distribution, which is represented by the 
histogram in Fig. 1. This is certainly not the case, as we have seen from 
r < 1 obtained in a MD simulation. To have a numerical estimate of the 
influence of this "shif t ing" of N2, let us calculate the extremum of the 
distribution for P(N2, 97) and let us investigate variations of  the position of 
this extreme with change in 97. 
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a s  

It  is easy to show that P(N2, N)  satisfies a recurrence relation: 

P(N2 + 1, N)  = P(N2, N ) z ( N  - 2N2 - 1)(N - 2N2 - 2) (16) 

Let us now write n, the value of N2 for which P(N2) assumes maximum, 

n = z ( . N -  2n) 2 + ~ (t7) 

where ~ << n, and n << bT. Introducing this substitution into formula (16) for 
the extremum yields ~ ~ 3n/N 3. Thus ~ is small (c~ ~ 10- 5) and n = z(N - 2n) 2 
with a good accuracy. Now it is easy to see that a small variation of N leads 
to a change in n: 

An -~ 2z~7 A ~  

For  typical N, A)~, and z the above equation yields An ~ 0.6. Therefore 
AN22/n ~ 0.05, at most of the order of the statistical errors indicated before. 
Moreover, it should be noted that this error should actually increase the 
value of the ratio r, making it more Poisson-like. As this change of distribution 
affects only the computer-experimental histogram in Fig. 1, there is little 
doubt that the actual molecular dynamics distribution is in fact sharper, more 
non-Poissonian than would be suggested by Van Kampen 's  corrected 
probability distribution. Before we ascribe this effect to the adiabaticity of  the 
system, which will be the last point taken up in this section, let us make one 
further comment. The finite size of the system and resulting corrections to the 
average value of (N2) were taken into account by the coefficient ~ in formula 
(17). These corrections have proved to be of the order of (N2} / (N}  a. We 
expect that corrections to ((N2 - (N2)) 2) will be of the same order for any 
distribution closely related to the Poisson distribution. Therefore, the finite 
system effects should play no detectable role for the ratio if ~ << (N2), as it 
certainly is in our system. 

The adiabaticity of the simulated system is the last problem we have to 
deal with before being able to state that the dimer distribution is definitely 
non-Poissonian in a manner predicted by Van Kampen.  I f  the presence of 
larger clusters, considered before, tends to "wash  ou t"  the distribution, 
increasing the ratio, adiabaticity has an exactly opposite effect. Due to energy 
conservation a system containing more dimers will be hotter. This will act in 
a way as a negative feedback, trying to stabilize the number of  dimers around 
some (N~). In fact, the discussed change of the probability distribution due to 
the conservation of the total number of atoms can also be treated as a negative 
feedback effect, where the decrease in the monomer  concentration makes 
dimer formation less likely than dimer dissolution. 

To establish which of the two feedback effects is dominant in our system, 
we need to evaluate the relative importance of the two conservation laws- -  
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conserva t ion  of  the to ta l  number  of  a toms  and conserva t ion  of  the to ta l  
energy o f  the system. 

Let  us then es t imate  a typical  react ion strength due to finite N. As the 
average value o f  N2 is p r o p o r t i o n a l  to N, (N2)  = kN ,  we have for  the 
derivat ive 

d ( N 2 ) / d N  = k ~ 0.07 

A typical  var ia t ion  of  N2 ~ 5 will cause a feedback  effect equal  to (d(N2) /  
dN)  x A ~ 10 x 0.07 = 0.7. 

On the other  hand,  the coupl ing cons tan t  between N2 and the tempera-  
ture with N = 100 can be found  as the slope of  the ( N 2 ( T ) )  dependence/8'1~ 
I t  is given by d(N2) /dT*  ~ 6. The change in T* caused by a var ia t ion  of  
N2 ~ 5 is given by AT* = N2e/2N = 0.025. The resul t ing feedback  effects 
are o f  the o rder  of  (d (N2) /dT*)  x AT* ~ 0.15. Clearly,  the fact tha t  the 
system conserves  energy is five t imes " less  i m p o r t a n t "  than  the a tom number  
conserva t ion  requirement .  With, the ra t io  of  coupl ings  5: 1 it  may  nevertheless 
be possible  tha t  the observed na r rowing  of  the d imer  d is t r ibu t ion  beyond  the 
value predic ted  by (5) is due to the ad iaba t ic i ty  of  the system. 
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